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Vortex dynamics in a three-state model under cyclic dominance
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The evolution of domain structure is investigated in a two-dimensional voter model with three states under
cyclic dominance. The study focus on the dynamics of vortices, defined by the points where the three states
~domains! meet. We can distinguish vortices and antivortices which walk randomly and annihilate each other.
The domain wall motion can create vortex-antivortex pairs at a rate that is increased by the spiral formation
due to cyclic dominance. This mechanism is contrasted with a branching annihilating random walk~BARW!
in a particle-antiparticle system with density-dependent pair creation rate. Numerical estimates for the critical
indices of the vortex density@b50.29(4)# and of its fluctuation@g50.34(6)# improve an earlier Monte Carlo
study@K. Tainaka and Y. Itoh, Europhys. Lett.15, 399 ~1991!# of the three-state cyclic model in two dimen-
sions.@S1063-651X~99!09010-8#

PACS number~s!: 02.50.2r, 82.40.Ck, 05.40.2a
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The self-organizing domain structures in the cyclic va
ants of the Lotka-Volterra model@1,2# have been extensivel
investigated because similar spatiotemporal oscillations
appear in chemical reactions as well as in more comp
ecological processes. These phenomena can be well stu
within the formalism of voter models@3# we will follow
henceforth. Different versions of the three-state voter mod
under cyclic dominance on a square lattice were introdu
by Itoh and Tainaka@4–6#. Bramson and Griffeath@7# stud-
ied the flux and fixation in cyclic particle systems. The p
tern formation in cyclic cellular automata was investigat
by Fisch @8#. Using a pair approximation, Frachebourg a
Krapivsky @9# have shown that fixation occurs in a cycl
Lotka-Volterra model if the system is started from a rand
initial state and the number of states exceeds a critical v
dependent on the dimension. According to this result,
system tends toward a self-organizing, inhomogeneous s
if the number of states is less than 14 on a square lat
Unfortunately, the theoretical understanding of the mec
nism maintaining the inhomogeneous state is still inco
plete.

In this work we consider the features of a self-organiz
domain structure in a two-dimensional system using the c
cept of vortices defined for three-state models. Instead
studying the average sizes of the domains, Tainaka and
@5# have determined the average density of vorticesc
5^Nv&/L

2, whereNv denotes the number of vortices in
system withL3L lattice points!. The vortices are points in
these domain structures where the three different statesA,
B, and C) and the three types of domain walls meet. E
dently, the value ofc21 represents roughly the average d
main area~size!. The investigation of vortex density wa
strongly motivated by the fact that its determination is mu
easier than the evaluation of the average domain size.

Figure 1 shows a~three-color! domain structure on the
macroscopic scale. It is easy to recognize that two type
vortices may be distinguished as indicated by black a
white bullets in the figure. We will call them vortex an
antivortex depending on whether we find anABC or ACB
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order when going clockwise around the center. A simple r
may be deduced at first glance, namely, the number of v
tices is even around a closed domain. More precisely,
vortices and antivortices are alternately located along
closed boundary of a domain. This feature has serious c
sequences when the motion and collision of vortices is c
sidered.

During the time evolution of a three-color domain stru
ture the vortices move together with the boundaries. In th
processes the vortices can collide and annihilate each o
Figure 2 illustrates the typical elementary events~after the
transient processes! whose combinations describe all the po
sible phenomena related to the creation, annihilation,
collisions of the vortices. In the present approach the to
logical situations where four~or more! domain boundaries
meet at a given point are considered as instantaneous e
of collisions, pair annihilations, or creations. Evidently, t
illustrated elementary events modify the connectivity amo
the vortices. This connectivity, however, can be modified
either fusion or fission of domains without any change
their constellation.

A numeric analysis of the vortex density was perform

FIG. 1. A typical domain structure for a three-state~color!
model. The black bullets with white borders and the white bull
with black borders represent the vortices and antivortices.
3776 © 1999 The American Physical Society
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by Tainaka and Itoh@5# in a two-dimensional voter mode
where the voters, located on a square lattice, should ch
among three states~opinions!: A, B, andC. The system evo-
lution is governed by a simple algorithm: a randomly chos
voter or one of its nearest neighbors can modify their opin
if those are different. If the chosen voter and its neighbor
in the statesA and B, then the first voter adopts opinionB
with probabilityP, otherwise its neighbor changes its state
A. This adoption rule is repeated cyclically for theB-C and
C-A cases. Similar cyclic dominance characterizes the ‘‘
per, scissors, stone’’ games@10#.

The direction of dominance can be reversed by replac
1-P for P, therefore the analyses are restricted toP.1/2.
For P51/2 the present model is equivalent to a tradition
voter model@3#, which exhibits a~three-color! domain coars-
ening phenomenon if initially the voter states are random
other words, the finite system evolves into one of the th
homogeneous states while the vortex density goes to ze

For P.1/2, however, a self-organizing domain structu
is maintained, and the vortex density tends to a station
value,Nv dependent onP. More precisely, Tainaka and Ito
have found a power law behavior, namely,

c;~P2Pc!
b, ~1!

wherePc51/2 andb;0.40 @5#.
We have repeated these simulations using larger sys

size (4003400) and longer sampling times. In the vicinity o
Pc (P2Pc,0.01) the thermalization is chosen to be long
than 250 000 MCS~Monte Carlo steps per particle!. In the
stationary state we have determined all the four-point c
figuration probabilitiesQ(n1 ,n2 ,n3 ,n4)@ni5A,B, or C; ( i
51,2,3,4)# of a 232 cluster. In our notation the (A,A,B,C)
configuration refers to a vortex, the (A,A,C,B) to an anti-
vortex, and the (A,B,C,A) configuration can be interprete
as a vortex-antivortex pair~before their annihilation or afte
their birth!. Monitoring the vortex density we were able

FIG. 2. Schematic plots for characterizing the elements of v
tex dynamics on a three-state map. The upper process~a! represents
the annihilation of a vortex-antivortex pair walking along the
common boundary line as well as the reverse phenomenon c
sponding to a spontaneous pair creation.~b! The ‘‘collision’’ of two
vortices or antivortices can modify the type of domain separa
them. ~c! A vortex-antivortex pair can annihilate each other in
different way when crossing through the separating domain.
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determine its average value and its fluctuation@x
5L2^(Nv /L22c)2&# in the stationary states as a function
p[P2Pc .

The results of our simulations are summarized in two lo
log plots ~see Figs. 3 and 4!. Figure 3 demonstrates that w
have reproduced Tainaka and Itoh’s data@5# for p.0.1. In
this region the fitted power law~dashed line! is characterized
by an exponentb50.41(3) in agreement with Tainaka an
Itoh. For smallerp values, however, we have found a diffe
ent exponentb50.29(4) ~solid line!. Similar crossover be-
havior can be observed for the fluctuation as shown in Fig
The fluctuation remains approximately constant forp.0.1,
whereas it follows a power law@x;(P2Pc)

2g with g
50.34(6)] for smallerp values.

The above-mentioned configuration probabilities sati
the reflection, rotation of 90 ° and cyclic symmetries. Co
sequently, all these quantities are describable, within a c
ter approximation, by introducing six independent para
eters that can be evaluated by solving a set of equation
motion for the four-point configuration probabilities. Prev
ously, this method has been proved to be a very efficient

r-

re-

g

FIG. 3. Log-log plot of vortex density vsP in the three-
candidate voter model under cyclic dominance. The open diamo
represent MC data, the solid and dashed lines~resp. slopes 0.29 and
0.41! indicate the fitted power laws.

FIG. 4. Log-log plot of density fluctuation vsP2Pc in the
three-candidate voter model under cyclic dominance. MC res
are represented by open squares, the fitted power law functio
represented by a solid line for smallP2Pc values.
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for the investigations of stochastic cellular automata@11#,
evolutionary games@12#, different lattice versions of the
Lotka-Volterra models~at the level of pair approximation!
@6,9#, and for a two-dimensional driven lattice gas mainta
ing a self-organizing domain structure, too@13#. In the
present case, the calculations show a very weakP depen-
dence of the configuration probabilities, including the vort
constellations mentioned above, in contrast with the M
simulations. At the level of the pair approximation the co
figuration probabilities are independent ofP @6#, while the
mean-field~one-point! approximation predicts homogeneo
oscillatory behavior. At the five-point level, on the oth
hand, the preliminary calculations~integrating numerically
the equations of motion! also indicate a very weakP depen-
dence. This puzzling failure of the dynamical cluster tec
nique inspired us to search for a mechanism observabl
macroscopic~or mesoscopic! scale.

For P51/2, the domain coarsening is accompanied by
annihilation of pairs, and this process is not prevented by
weak spontaneous pair creation. Under cyclic domina
(P.1/2), however, we have detected the appearence
pair creation mechanism which is able to compensate for
previous annihilation process, yielding a finite vortex de
sity. We have displayed in Fig. 5 the evolution of a sing
vortex whose geometry allows us to recognize the esse
processes. Here, instead of the usual periodic boundary
ditions, we have assumed that a voter residing on the peri
and its ‘‘hypothetic’’ outer neighbor have always the sam
opinion. Along the boundaries one can observe a cyclic
vasion whose average velocity component perpendicula
the border line is proportional toP2Pc . This motion of the
boundaries yields a spiral formation around the center.
average time evolution is decorated by noise as shown
series of snapshots in Fig. 5. Due to the randomness
neighboring boundaries can contact and create vor
antivortex pairs inside the spiral because it consists of n
row ‘‘arms,’’ which is a favored situation for the pair cre
ation. The created pairs can be considered as the offspin
the original vortex. Most of the pairs are annihilated within
short time but, sooner or later, a vortex-antivortex pair w
eventually drift apart from each other. The correspond
vortices will then expand and become capable to create
ther offsprings via the same spiral formation process. T

FIG. 5. Time evolution of a vortex initially having straight bo
der lines forP51. The figures at the upper-left corners indicate t
time measured in MCS units.
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self-organizing domain structure can thus be maintained
this mechanism.

Within the framework of the vortex language, the evol
tion of domain structure can be described by the tw
dimensional motion of vortices, allowing the annihilatio
and creation of pairs. Assuming that the motion of vortices
dominantly controlled by noise, the present problem can
considered as a so-called branching annihilating rand
walk ~BARW! with two types of particles created and ann
hilated in pairs. The branching process is evidently co
trolled by the value ofP2Pc , though the mathematical re
lation between the branching rate andP2Pc is not yet
clarified. Furthermore, the branching rate is affected by
nearest neighbor distances because it limits the spiral for
tion.

The traditional BARWs have been intensively studied
the last years~for recent reviews, see the work by Cardy a
Täuber@14# and Marro and Dickman@15#! because they un
dergo a critical transition when varying the rate of branchin
The corresponding critical behavior belongs to the direc
percolation ~DP! universality class @16# involving the
Reggeon field theory@17#, the surface reaction@18# and
Schlögl models@19#, and the extinction phenomena observ
in spatial evolutionary games@12#. According to the ‘‘DP
conjecture’’ @20# most of the one-component model with
single absorbing state belong to the DP universality cla
Exceptions can appear when additional symmetries@21# or
conservation laws are introduced. Well known examples
those models in which the parity of particles is conserv
during the elementary processes@22,23#. The introduction of
two ~or more! types of particles has enlarged the number
possible universality classes@14,24#.

The field theoretical results@14,24,25# indicate that mean-
field approaches can give satisfactory description of the t
dimensional BARW models with two types of particles. Th
observation motivated us to try to describe the branch
annihilating random walks of vortices and antivortic
through a mean-field equation with a density-depend
branching rate, namely,

]

]t
c52c21l~c!c, ~2!

wherec denotes the concentration of vortices and antivo
ces. The first term describes the annihilation process wh
prefactor is eliminated by choosing a suitable time scale.
simplicity we suppose that the density dependence of
branching rate follows a power law with exponentn,

l~c!5pc2n, ~3!

where p5A(P2Pc). Notice that this branching rate di
verges in the limitc→0 if n.0. In the stationary state on
can easily determine the concentration as a function ofp:

c;p1/~11n!. ~4!

Comparing this formula with the above MC results one c
conclude that the present mean-field description predictn
.1.5 if P2Pc.0.1 andn.2.5 for the smaller value ofP
2Pc .
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In order to check the role of fluctuations we have p
formed MC simulations on a particle-antiparticle BARW
model. The system evolution is governed by nearest ne
bor jumps, particle-antiparticle pair annihilations, and c
ations as follows. A randomly chosen particle~or antipar-
ticle! can create a particle-antiparticle pair located on t
randomly chosen nearest neighbor sites with a probab
Pbr , otherwise this particle jumps to one of the near
neighbor sites. The processes which would result in two p
ticles ~or antiparticles! residing on the same point ar
blocked. A particle-antiparticle pair is annihilated if the
would stay on the same point as a result of the mentio
elementary processes. The branching ratePbr is determined
for a given particle as a productPbr5pR1R2R3, where
R1 (R2 , R3) denotes the distance between the chosen
ticles and its first~second, third! neighbor antiparticles. The
choice of this branching rate is motivated by the topologi
fact that, in the original voter model, a vortex is connec
directly to three antivortices by boundary lines~see Fig. 1!.
During the simulations the value ofPbr can become large
than 1 very rarely, thus, we did not need to reduce the t
unit in which each particle has a chance to create offspri
or to jump. Initially particles and antiparticles with equ
numbers are distributed randomly on a square lattice.
system size is varied fromL5100 to 400 when decreasingp.
During the simulations we have recorded the number of p
ticles and determined the average value of the concentra
c and its fluctuationx in the stationary state as define
above. From these MC results~see Fig. 6! we could confirm

FIG. 6. MC results for the particle-antiparticle concentrati
~open diamonds! and its fluctuation~open squares! as a function of
p in the BARW model described in the text. The solid line~slope
0.42! indicates a fitted power law.
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that the concentration follows a power law~solid line! with
an exponentb50.42(3). It is emphasized that this value o
b agrees very well with the prediction of the above mea
field formalism (bMF50.4 for n51.5). This result implies
that any value of the exponentb is reproducible with the
parameter adjustment of a more sophisticated BARW mo

Considering the fluctuations obtained by simulations
striking difference is found between the present BAR
model and the three-candidate voter model. The BAR
simulations ~squares in Fig. 6! indicate thatx(p)}c(p),
which seems to be a typical behavior for the BARW mod
@25,26#. For the voter model, on the contrary,x diverges~see
Fig. 4! for small values of the control paramater. We c
identify two possible sources for this discrepancy. First, d
ing the diffusive motion the particle-antiparticle annihilatio
results in an aggregation of the two species@27#, whereas in
the vortex-antivortex system such a process is strongly l
ited by the mentioned topological features. Second,
threefold degeneracy of the absorbing states of the th
candidate voter model has no counterpart in the traditio
BARW models. Notice that, in the suggested BARW mo
els, the evolution into an absorbing state is prevented by
divergency of the branching rate in the limitc→0 for suffi-
ciently large system size. Further systematic research is
quired to clarify the effect of these phenomena.

To summarize, in the present paper we have improved
accuracy of the numerical analysis of the critical transiti
appearing in the vortex density for the three-candidate vo
model when varying the magnitude of cyclic dominanc
Recognizing that the dynamics of the vortices and antivo
ces is similar to a BARW model with a density-depende
particle-antiparticle pair creation~branching! rate, we have
contrasted these two systems. According to our compari
we can state that the power law behavior of the vortex d
sity is reproducible with a suitable choice of the pair creat
mechanism. The same is not true for the behavior of fluct
tions, which seems to be quite different in the two mode
This discrepancy is a motivation to seek further extension
BARW models, since this approach seems to be very us
in the investigation of the self-organizing, three-color d
main structures.
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