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Vortex dynamics in a three-state model under cyclic dominance
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The evolution of domain structure is investigated in a two-dimensional voter model with three states under
cyclic dominance. The study focus on the dynamics of vortices, defined by the points where the three states
(domaing meet. We can distinguish vortices and antivortices which walk randomly and annihilate each other.
The domain wall motion can create vortex-antivortex pairs at a rate that is increased by the spiral formation
due to cyclic dominance. This mechanism is contrasted with a branching annihilating randorfBARN/)
in a particle-antiparticle system with density-dependent pair creation rate. Numerical estimates for the critical
indices of the vortex densify3=0.29(4)] and of its fluctuatiorj y=0.34(6)] improve an earlier Monte Carlo
study[K. Tainaka and Y. Itoh, Europhys. Lett5, 399(1991)] of the three-state cyclic model in two dimen-
sions.[S1063-651X99)09010-9

PACS numbd(s): 02.50-r, 82.40.Ck, 05.40-a

The self-organizing domain structures in the cyclic vari-order when going clockwise around the center. A simple rule
ants of the Lotka-Volterra modgl,2] have been extensively may be deduced at first glance, namely, the number of vor-
investigated because similar spatiotemporal oscillations catices is even around a closed domain. More precisely, the
appear in chemical reactions as well as in more complexortices and antivortices are alternately located along the
ecological processes. These phenomena can be well studietdsed boundary of a domain. This feature has serious con-
within the formalism of voter model§3] we will follow sequences when the motion and collision of vortices is con-
henceforth. Different versions of the three-state voter modelsidered.
under cyclic dominance on a square lattice were introduced During the time evolution of a three-color domain struc-
by Itoh and Tainak@4—6]. Bramson and Griffeatfi7] stud-  ture the vortices move together with the boundaries. In these
ied the flux and fixation in cyclic particle systems. The pat-processes the vortices can collide and annihilate each other.
tern formation in cyclic cellular automata was investigatedFigure 2 illustrates the typical elementary eve(after the
by Fisch[8]. Using a pair approximation, Frachebourg andtransient processpghose combinations describe all the pos-
Krapivsky [9] have shown that fixation occurs in a cyclic sible phenomena related to the creation, annihilation, and
Lotka-Volterra model if the system is started from a randomcollisions of the vortices. In the present approach the topo-
initial state and the number of states exceeds a critical valu®gical situations where foufor more domain boundaries
dependent on the dimension. According to this result, théneet at a given point are considered as instantaneous events
system tends toward a self-organizing, inhomogeneous sta@ collisions, pair annihilations, or creations. Evidently, the
if the number of states is less than 14 on a square latticdllustrated elementary events modify the connectivity among
Unfortunately, the theoretical understanding of the mechathe vortices. This connectivity, however, can be modified by
nism maintaining the inhomogeneous state is still incom-either fusion or fission of domains without any change in
plete. their constellation.

In this work we consider the features of a self-organizing A numeric analysis of the vortex density was performed
domain structure in a two-dimensional system using the con-
cept of vortices defined for three-state models. Instead of
studying the average sizes of the domains, Tainaka and Itoh
[5] have determined the average density of vortices (
=(N,)/L?, whereN, denotes the number of vortices in a
system withL X L lattice point$. The vortices are points in
these domain structures where the three different states (
B, andC) and the three types of domain walls meet. Evi-
dently, the value ot~ ! represents roughly the average do-
main area(size. The investigation of vortex density was
strongly motivated by the fact that its determination is much
easier than the evaluation of the average domain size.

Figure 1 shows dthree-coloy domain structure on the
macroscopic scale. It is easy to recognize that two types of
vortices may be distinguished as indicated by black and FIG. 1. A typical domain structure for a three-stateolor
white bullets in the figure. We will call them vortex and model. The black bullets with white borders and the white bullets
antivortex depending on whether we find ABC or ACB  with black borders represent the vortices and antivortices.
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FIG. 2. Schematic plots for characterizing the elements of vor-
tex dynamics on a three-state map. The upper pro@sepresents FIG. 3. Log-log plot of vortex density v$ in the three-
the annihilation of a vortex-antivortex pair walking along their candidate voter model under cyclic dominance. The open diamonds
common boundary line as well as the reverse phenomenon corréepresent MC data, the solid and dashed linesp. slopes 0.29 and
sponding to a spontaneous pair creati@.The “collision” of two ~ 0.41) indicate the fitted power laws.
vortices or antivortices can modify the type of domain separating
them. (c) A vortex-antivortex pair can annihilate each other in a getermine its average value and its fluctuatidry
different way when crossing through the separating domain. _ L2<(NV/L2—C)2>] in the stationary states as a function of

p=P—P..
by Tainaka and Ito}5] in a two-dimensional voter model ~ The results of our simulations are summarized in two log-
where the voters, located on a square lattice, should chooseg plots (see Figs. 3 and)4Figure 3 demonstrates that we
among three statgspinions: A, B, andC. The system evo- have reproduced Tainaka and Itoh’s dg& for p>0.1. In
lution is governed by a simple algorithm: a randomly choserthis region the fitted power laydashed lingis characterized
voter or one of its nearest neighbors can modify their opiniorby an exponenB=0.41(3) in agreement with Tainaka and
if those are different. If the chosen voter and its neighbor aretoh. For smalleip values, however, we have found a differ-
in the statesA and B, then the first voter adopts opinid  ent exponenp3=0.29(4) (solid ling). Similar crossover be-
with probability P, otherwise its neighbor changes its state tohavior can be observed for the fluctuation as shown in Fig. 4.
A. This adoption rule is repeated cyclically for tBeC and  The fluctuation remains approximately constant fior0.1,
C-A cases. Similar cyclic dominance characterizes the “pawhereas it follows a power layxy~(P—P.) 7 with y
per, scissors, stone” gamgs0]. =0.346)] for smallerp values.

The direction of dominance can be reversed by replacing The above-mentioned configuration probabilities satisfy
1-P for P, therefore the analyses are restrictedPto 1/2.  the reflection, rotation of 90° and cyclic symmetries. Con-
For P=1/2 the present model is equivalent to a traditionalsequently, all these quantities are describable, within a clus-
voter model[3], which exhibits &three-coloy domain coars-  ter approximation, by introducing six independent param-
ening phenomenon if initially the voter states are random. Ireters that can be evaluated by solving a set of equations of
other words, the finite system evolves into one of the thregnotion for the four-point configuration probabilities. Previ-
homogeneous states while the vortex density goes to zero.ously, this method has been proved to be a very efficient tool

For P>1/2, however, a self-organizing domain structure
is maintained, and the vortex density tends to a stationary
value,N, dependent of*. More precisely, Tainaka and Itoh 10
have found a power law behavior, namely,

0

c~(P=Po)’, oY)

whereP.=1/2 andB~0.40[5].

We have repeated these simulations using larger system
size (400< 400) and longer sampling times. In the vicinity of
P. (P—P.<0.01) the thermalization is chosen to be longer oo,
than 250000 MCSMonte Carlo steps per partigleln the . . .
stationary state we have determined all the four-point con- 10 102 10"
figuration probabilitiesQ(n4,n,,n3,n,)[Ni=A,B, or C; (i P-P
=1,2,3,4) of a 2X 2 cluster. In our notation the’(A,B,C) ¢
configuration refers to a vortex, thé\(A,C,B) to an anti- FIG. 4. Log-log plot of density fluctuation v®— P in the
vortex, and the A,B,C,A) configuration can be interpreted three-candidate voter model under cyclic dominance. MC results
as a vortex-antivortex paibefore their annihilation or after are represented by open squares, the fitted power law function is
their birth). Monitoring the vortex density we were able to represented by a solid line for sm& P values.
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self-organizing domain structure can thus be maintained by
this mechanism.

Within the framework of the vortex language, the evolu-
tion of domain structure can be described by the two-
dimensional motion of vortices, allowing the annihilation
and creation of pairs. Assuming that the motion of vortices is
dominantly controlled by noise, the present problem can be
considered as a so-called branching annihilating random
walk (BARW) with two types of particles created and anni-
hilated in pairs. The branching process is evidently con-
trolled by the value oP— P, though the mathematical re-
lation between the branching rate afdt-P. is not yet
clarified. Furthermore, the branching rate is affected by the
nearest neighbor distances because it limits the spiral forma-
tion.

FIG. 5. Time evolution of a vortex initially having straight bor- The traditional BARWSs have been intensively studied in
o_Ier lines forP= 1 The figur_es at the upper-left corners indicate theipe |ast yeargfor recent reviews, see the work by Cardy and
time measured in MCS units. Tauber[14] and Marro and Dickmafil5]) because they un-
dergo a critical transition when varying the rate of branching.
The corresponding critical behavior belongs to the directed

for the investigations of stochastic cellular autompta],
evolutionary gameg12], different lattice versions of the . . ) . .
Lotka-Volterra modelqat the level of pair approximation percolatlon_ (DP) universality class[16] mv_olvmg the
[6,9], and for a two-dimensional driven lattice gas maintain-R€ggeon field theory17], the'sur.face reactiofi18] and
ing a self-organizing domain structure, t4a3]. In the _Schlcgl_models[l_g], and the extinction phe_nomena observed
present case, the calculations show a very wRatepen- N spatial evolutionary gamedl2]. According to the “DP

dence of the configuration probabilities, including the vortexConiecture”[20] most of the one-component model with a

constellations mentioned above, in contrast with the MCsmgIe gbsorbing state belong to t_he DP universality class.

simulations. At the level of the pair approximation the con-EXCE"pt'on.S can appear when additional symmeiis§ or

figuration probabilities are independent Bf{6], while the conservation IQWS are mtroduce_d. Wwell kn_own _examples are

mean-field(one-point approximation predicts homogeneous t10S€ models in which the parity of particles is conserved

oscillatory behavior. At the five-point level, on the other during the elementary proc_:ess{é@,Zﬂ. The intraduction of

hand, the preliminary calculation@ntegrating numerically two (_or morg) types of particles has enlarged the number of

the equations of motioralso indicate a very weaR depen-  POSSible universality class¢s4,24.

dence. This puzzling failure of the dynamical cluster tech-. The field theoretical _resul(g_.4,24,23|nd|ca_te _that mean-

nique inspired us to search for a mechanism observable %Fld approaches can give satisfactory description of the two-

macroscopidor mesoscopicscale. |men5|qnal BARW models with two types_of particles. Th_|s
For P=1/2, the domain coarsening is accompanied by thé)bs.er_vat]on motivated us to try to c_jescrlbe the l?ran(_:hlng

annihilation of pairs, and this process is not prevented by th nnihilating randqm walks .Of vortices and _antivortices

weak spontaneous pair creation. Under cyclic dominancdoudh a mean-field equation with a density-dependent

(P>1/2), however, we have detected the appearence of ranching rate, namely,

pair creation mechanism which is able to compensate for the

p_revious annihilation process, yielding a fini_te vortex .den— £c= —c24+\(c)c, )

sity. We have displayed in Fig. 5 the evolution of a single ot

vortex whose geometry allows us to recognize the essential

processes. Here, instead of the usual periodic boundary coltherec denotes the concentration of vortices and antivorti-

ditions, we have assumed that a voter residing on the perifer§es. The first term describes the annihilation process whose

and its “hypothetic” outer neighbor have always the samePrefactor is eliminated by choosing a suitable time scale. For

opinion. Along the boundaries one can observe a cyclic insimplicity we suppose that the density dependence of the

vasion whose average velocity component perpendicular tBranching rate follows a power law with exponent

the border line is proportional t8— P, . This motion of the

boundaries yields a spiral formation around the center. The A(c)=pc?, ©)

average time evolution is decorated by noise as shown in a

series of snapshots in Fig. 5. Due to the randomness th&here p=A(P—P.). Notice that this branching rate di-

neighboring boundaries can contact and create vortex¥erges in the limitt—0 if »>0. In the stationary state one

antivortex pairs inside the spiral because it consists of narcan easily determine the concentration as a functiop: of

row “arms,” which is a favored situation for the pair cre-

ation. The created pairs can be considered as the offspings of c~pHy, (4)

the original vortex. Most of the pairs are annihilated within a

short time but, sooner or later, a vortex-antivortex pair will Comparing this formula with the above MC results one can

eventually drift apart from each other. The correspondingconclude that the present mean-field description predicts

vortices will then expand and become capable to create fur=1.5 if P—P.>0.1 andv=2.5 for the smaller value of

ther offsprings via the same spiral formation process. The-P..
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that the concentration follows a power lggolid line) with
an exponenB=0.423). It is emphasized that this value of
B agrees very well with the prediction of the above mean-
field formalism (Byr=0.4 for v=1.5). This result implies
that any value of the exponeift is reproducible with the
parameter adjustment of a more sophisticated BARW model.
Considering the fluctuations obtained by simulations, a
striking difference is found between the present BARW
model and the three-candidate voter model. The BARW
simulations (squares in Fig. Bindicate thaty(p)e=c(p),
which seems to be a typical behavior for the BARW models
[25,26]. For the voter model, on the contrany diverges(see
Fig. 4) for small values of the control paramater. We can

_ o __identify two possible sources for this discrepancy. First, dur-
FIG. 6. MC results for the particle-antiparticle concentration .

(open diamondsand its fluctuatior{open squarésas a function of ing the .diffusive motioln the particle-antiparticle annihilgtion
p in the BARW model described in the text. The solid litgope results in an aggregation of the two spedi2g], whereas in
0.42 indicates a fitted power law. the vortex-antivortex system such a process is strongly lim-
ited by the mentioned topological features. Second, the
In order to check the role of fluctuations we have per-three.fOId degeneracy of the absorbing states of the.t_hree-
candidate voter model has no counterpart in the traditional

formed MC simulations on a particle-antiparticle BARW . .
model. The system evolution is governed by nearest neighl?’ARW models. Notice that, in the suggested BARW mod-

bor jumps, particle-antiparticle pair annihilations, and Cre_els, the evolution into an absorbing state is prevented by the

ations as follows. A randomly chosen partidier antipar- divergency of the branching rate in the lingit-0 for suffi-

. : . : ciently large system size. Further systematic research is re-
icl n cr rticle-antiparticl ir | n two_ " .
ticle) can create a particle-antiparticle pair located on two ired to clarify the effect of these phenomena.

: : ) 2o0u
randomly chosen nearest neighbor sites with a probablllt)g To summarize, in the present paper we have improved the

Pyr, otherwise this particle jumps to one of the nearest

neighbor sites. The processes which would result in two parz_iccuracy of the numerical analysis of the critical transition

ticles (or antiparticley residing on the same point are %popde;”vr;%é?] tcgrvi?]rte)t(hge';]S;ynﬁ?l;;ge;fhfi}?ﬁ%‘ggﬁgggﬂ
blocked. A particle-antiparticle pair is annihilated if they ying Y Y ‘

would stay on the same point as a result of the memionegeecognlzmg that the dynamics of the vortices and antivorti-

elementary processes. The branching Rjgis determined Ces IS S|m|l'ar tq a BARW quel with a density-dependent
for a given particle as a produd®,, =pR,R,Rs, where particle-antiparticle pair creatiofbranching rate, we have
br— IRRAVARCH]

R, (R,, R;) denotes the distance between the chosen parqontrasted these two systems. According to our comparison,

ticles and its firssecond, thirgl neighbor antiparticles. The we can state that the power law behavior of the vortex den-
. ; R g P "~ _sity is reproducible with a suitable choice of the pair creation
choice of this branching rate is motivated by the topologica ; . ;
. L ) mechanism. The same is not true for the behavior of fluctua-
fact that, in the original voter model, a vortex is connected.. . : . .
. . . . : tions, which seems to be quite different in the two models.
directly to three antivortices by boundary linesee Fig. L . : T :
Durind the simulations the value &.. can become laraer This discrepancy is a motivation to seek further extensions of
9 . br g€ BARW models, since this approach seems to be very useful
than 1 very rarely, thus, we did not need to reduce the tim

unit in which each particle has a chance to create offsprin In the investigation of the self-organizing, three-color do-

g .
or to jump. Initially particles and antiparticles with equal Fhain structures.

numbers are distributed randomly on a square lattice. The We thank P. Krapivsky for a critical reading of the manu-
system size is varied fromn= 100 to 400 when decreasipg  script. G.S. acknowledges financial support from PRAXIS
During the simulations we have recorded the number of partPortuga). Support from NATO(Grant No. CRG-970332
ticles and determined the average value of the concentratidRRAXIS (Project No. PRAXIS/2/2.1/Fis/299/94and the

¢ and its fluctuationy in the stationary state as defined Hungarian National Research Fu@rant No. T-2355pare
above. From these MC resultsee Fig. 6 we could confirm  also acknowledged.
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